
January 2013 FoxRockX Page 1

Try Thor’s Terrifi c Tools,
Part 2
Thor offers lots of tools for working with classes and forms. Learning to use them
can make you more productive.

Tamar E. Granor, Ph.D.

In my last article, I showed a few of the tools that
are included with Thor. This time, I’ll look at some
more of them, including a number that simplify
refactoring.
Thor is a VFPX tool whose purpose is to make it
easier to use other tools. It provides an easy way
to put your homegrown tools on the VFP menu, as
well as to make them available via hotkeys. It grew
out of the VFPX PEM Editor project.

When you install Thor, it includes dozens of
tools for tasks from grabbing the list of fi elds in
a table to adding local declarations to code. (The
Create Locals tool is discussed in my last article.)
Even if you have no homegrown tools to add, these
built-in tools make it worth installing and running
Thor.

Most of the tools operate on code or other items
in the VFP IDE, so I’ll need to demonstrate on some
programs, forms and classes. As much as possible,
I’ll use code that comes with VFP.

For each tool, I’ll also show you where it’s
located on the Thor Tools menu.

 Copying and pasting PEMs
While you can copy an object in VFP and paste it
onto another form or class, there’s no native way
to give one object the same property values and
method code as another object. A pair of Thor tools
provides that capability.

Have you ever needed to confi gure a control to
be the same or almost the same as an existing control
(in a case where using a common class doesn’t make
sense)? Confi guring the new control to match the
existing one is something of a pain, as you have to go
one by one through the changed PEMs (properties,
events and methods) in the Property Sheet for the
original object, and for each, switch to the new object
to set its corresponding PEM.

Thor takes the pain away. It also makes it easy
to insert a parent class into an inheritance hierarchy.

Copy (for comparing and pasting)
Menu: Objects and PEMs | Copy / Paste | Copy
(for comparing and pasting)
This tool lets you pick up all the modifi ed PEMs for
an object and store them on a special clipboard. To
use it, you simply select the object and choose this
tool.

By itself, this tool isn’t terribly useful. It’s meant
to be followed by Paste properties and method
code (described in the next section) or Compare
with copied object (described later in this article).

Paste properties and method code
Menu: Objects and PEMs | Copy / Paste | Paste
properties and method code
This tool lets you set properties and methods to the
values you previously copied from another object.
You can choose which PEMs to copy and whether
to add properties and methods that don’t exist in
the target object. Note that the target object does
not have to be based on the same base class as the
copied object.

Figure 1 shows a form that lets the user select
a product (from the Northwind Products table)
using a combo. The combo is based on the VFP base
combobox class. Suppose once I’ve created this
form, I decide that I want to insert a combo class in
between the base class and the one on the form. If
I want the class to be identical to the combo on the

F igure 1. This form uses a combobox to let the user choose a product.

Page 2 FoxRockX January 2013

ent class’s values for the same properties. Compare
with copied object lets you compare two unrelated
objects.

Compare with Parent Class
Menu: Parent Classes | Compare with Parent Class
Although the VFP Property Sheet lets you see
which PEMs of an object have been changed from
their default values (and even lets you see only

non-default PEMs), it provides no easy way to see
what those values are in the parent class.

The Compare with Parent Class tool opens a
separate form that shows each non-default prop-
erty, event and method in the selected object, along
with its value in the selected object and in the par-
ent class. It also indicates those properties with the
same value in both places. Finally, it allows you to
reset any of the displayed PEMs of the selected ob-
ject to their default values.

Figure 3 shows the form DataNav.SCX from
the Solution Samples that come with VFP. The
_tablenav object is selected. Figure 4 shows the
form opened by the Compare with Parent Class
tool (which is clearly a variation of the one used for
the Paste properties and method code tool). It indi-
cates that three properties and fi ve methods have
been set in the form’s Property Sheet. One of those,
Name, is the same on the form as in the class.

You can use the checkboxes to select some or
all of the PEMs shown and then click Reset Selected
Items to Default to clear those PEMs in the selected
object. Properties that have the same value as in the
class are automatically checked.

The Select and De-Select buttons open a
dropdown menu (shown in Figure 5) that lets you
specify the type of item to check or uncheck.

form, I can just select the combo and choose File |
Save As Class from the menu. But if I want to do
something more nuanced, this tool is just the ticket.

After selecting the combo, choose the Copy (for
comparing and pasting) tool to pick up its proper-
ties and method code. Then, create the new class
(using your favorite technique for doing so). Next,
use the Paste properties and method code tool; the
form in Figure 2 appears.

You can choose which PEMs to copy to the tar-
get. In the example, you probably don’t want to
copy the Left and Top properties, since the class
shouldn’t come with a specifi ed position Once
you’ve chosen the ones you want, click the Paste
button.

When the target is not a form or a class (that
is, the class that’s being edited in the Class Design-
er), properties that exist in the source, but not in
the target are marked as New and can’t be copied.
However, when the target is a form or a class as
in the example, a checkbox asks whether to create
PEMs that don’t exist.

Comparing objects
One of my favorite non-VFP tools is Beyond
Compare, which lets me compare folders and fi les to
fi nd differences between them. With Frank Perez’s
VFP add-on (http://pfsolutions-mi.com/Product/
VFP2Text), I can even compare VFP classes and
forms. But this isn’t a handy way to do so when
I’m in the middle of editing them, since you have to
close the fi les to look at them with Beyond Compare.

Thor includes two different tools for compar-
ing objects; both are pretty useful. Compare with
Parent Class lets you see which properties of a class
have non-default values and shows you the par-

Fi gure 2. The Paste properties and method code tool displays this form, which allows you to choose which PEMs are copied to the
target object.

January 2013 FoxRockX Page 3

There’s a reason this tool points out properties
that have the same value as in their parent class.
Every property that’s set in the Property Sheet has
to be evaluated and assigned during initialization
of a form or other class. So having properties that
are explicitly set to the default value from the par-
ent class can slow execution down (though you’re
unlikely to notice it unless there are many objects
with many such properties).

Compare with copied object
Menu: Objects and PEMS | Copy / Paste | Com-
pare with copied object
The second Thor tool for code comparison is
part of the set of copy-and-paste tools for classes
described in “Copying and pasting PEMs,”
earlier in this article.

To use this tool, you must fi rst select an
 object and use the Copy (for comparing and

pasting) tool found on
the same branch of the
Thor menu. Then select
the object to which you
want to compare the
fi rst object and choose
this tool.

To demonstrate,
we’ll look at the same
object we used for
Compare with Parent
Class, even though that
tool is a better choice in
this case. Starting with
the DataNav form, click
on the _tablenav object
and choose Thor Tools
| Objects and PEMs |
Copy / Paste | Copy
(for comparing and
pasting). Now close the

form and open the _tablenav class from _table.vcx
in the FFC folder (or better yet, use the Edit Parent
and Containing Classes tool described in my last
article to open it). When you choose this tool from
the menu, the form shown in Figure 6 appears.

PEMs with a gray background don’t exist in the
object where the value column is also gray. In the
example, the _tablenav class doesn’t have Left and
Top properties, but when dropped on the form,

Figu re 4. The Compare with Parent Class tool shows only those properties whose values are non-
default.

Figur e 5. The Select and De-Select buttons of the
Compare with Parent Class tool let you choose the
type of item to check or uncheck.

Fig ure 3. In this form from the Solutions Samples, an object based on
the _tablenav class (from the FoxPro Foundation Classes) is selected.

Page 4 FoxRockX January 2013

they’re added. Methods where a column is blank
(like the dobottommessage method in the example)
exist, but have no code anywhere in the inheritance
hierarchy up to that
class.

This tool seems
particularly useful for
situations where one
instance of a class isn’t
working, but other
 instances are. You can
compare the PEMs of
a working instance
to those of the non-
working one to see
what you’ve done dif-
ferently.

It also seems use-
ful for fi guring out
whether two existing
classes might produc-
tively share a common
parent class. (When
they can, the Paste
properties and meth-
od code tool gives you
an easy way to jump-
start creation of the par-
ent class.)

Re-Defi ne Parent Class
Menu: Parent Class | Re-Defi ne Parent Class
Changing the class a control is based on has always
been a bit of a pain. The Class Browser lets you
change a form‘s or class’s parent class, though not
the parent for a control already on another form or
class. Various third-party tools like HackCX pro-

vide a way to change the parent of any ob-
ject. But all of these approaches require you
to close the class or form you’re working
on so that the tool can open it. This tool lets
you change the parent class of a control on
a form or another class without closing the
form or class.

To use it, select the object whose parent
class you want to change, and choose this
tool from the menu. The form shown in Fig-
ure 7 appears; you use it to fi nd the new par-
ent class. The form lets you specify the type
of class you’re looking for (indicated by the
arrow) and where to look for it. The type can
be a specifi c base class, or “<All>.” For scope,
you can specify folder (as in the fi gure) or
choose any of the projects on the MRU list.
You can also specify all or part of the name
of the class you want; unlike the usual VFP
string comparison, the portion you specify
can be anywhere in the class name. Similar-

ly, you can provide part of a fi le name to limit the
search.

When you’ve set up the type of class and where
to look, click the Search button and the grid at the
bottom of the form shows all classes that match
your specifi cations. Choose the one you want and
click the Select button to change the parent of the
selected object to that class.

The same dialog used for the Paste properties
and method code and the Compare with parent
class tools opens, as in Figure 8, showing you prop-
erties and methods that are different in the new
parent and the existing object. Decide which of the
changed values you want to keep and click Paste.

Figure 6. This form appears when you use the Compare with copied object tool.
It shows PEMs that are different in the two objects.

Figure 7. Find and select the new parent class for an object using this form.

January 2013 FoxRockX Page 5

Document Treeview
Menu: Applications | Document Treeview
When Document View was added in VFP 7, it gave
us an easy way to navigate inside fi les containing
multiple routines. It was a major improvement over
the Procedures and Functions List it replaced. I use
it all the time when working with classes created in
code (PRG).

But Document View has never been all that
helpful for forms or for classes stored in a class
 library (VCX). While it lists every method that con-
tains code, it doesn’t give any sense of structure,
and in a busy form or class, it can be quite cluttered.

The Document Treeview tool is better suited for
visual classes (and, in fact, doesn’t work for code).
Document Treeview is based on the main
combobox of PEM Editor, but you can use
it as a stand-alone tool. It shows the objects
in a form or class and those of their meth-
ods that contain code. As the name indi-
cates, it uses a treeview control to organize
the information, so you can expand or col-
lapse any section. It can be resized as well
as docked. In addition, you can control
what appears at any time.

Figure 9 shows Document Treeview
for the form ToolboxAddClassLib that’s
part of the Toolbox (found in folder
tools\xsource\vfpsource\toolbox\of
your VFP installation after you’ve un-
zipped XSource.ZIP).

The colors in Document Treeview
help to quickly understand the display.
Names of objects are shown in black. If
the object was inherited along with its
container from a parent class (like the
controls inside oClassLib in the exam-
ple), its backcolor is gray. Method names

are shown in blue if they contain code at this level;
if they have only inherited code, they’re shown in
gray. All method names are bold, which offers an-
other way to distinguish them from object names.

Clicking on an object makes it the current object
in PEM Editor, if that tool is open. Often, it also
selects that object in the Form or Class Designer
and makes it the current object in the Property
Sheet; there are cases where it’s not possible to do so
programmatically, however.

You can click on any method to open it for edit-
ing; that’s just like Document View. But Document
Treeview offers another possibility. Use Ctrl+Click
on the method and a window opens showing you
all code for that method at all levels of the inheri-

Figure 9. Document Treeview shows you the objects in a class or form and any
methods that contain code.

Figure 8. Once you choose the new parent class, you have the opportunity to decide which property values and method code should
be kept.

Page 6 FoxRockX January 2013

tance hierarchy. Of course, you can’t edit
the code there, but it’s a much easier way
to see all the code than anything offered
natively. (Another Thor Tool, Code List-
ings, also lets you see all the code in one
place.)

Figure 10 shows part of the window
that opens when you Ctrl+Click on the Init
method of the ToolboxAddClassLib form.
The code added at the form level is shown
fi rst, followed by the code inherited from
the cFoxForm class. If there were more
classes in the inheritance hierarchy, they’d
be included, as well. For custom methods,
the hierarchy is followed back to the class
to which the method was added.

There are a number of ways to control
what appears in Document Treeview.
The two checkboxes above the treeview
control offer three variations. When
both are checked, you see all objects, as
well as those methods that have code,

as in Figure 9. If you uncheck All objects, you see
only those objects that have any code, as well as
the methods that contain code. Figure 11 shows
Document Treeview for the ToolboxAddClassLib
form with All objects unchecked.

As you can see, this
option makes it easy to see
where there’s code. Finally,
if you uncheck Methods,
the All objects checkbox
is hidden, and you see
all the objects in the form
or class. Figure 12 shows
Document Treeview for the
ToolboxAddClassLib form
with Methods unchecked.

You can also control
the display using the tool’s
context menu. Figure 13
shows the basic menu, as
it appears when you right-
click on the background of
the tool. (Right-clicking on
a node, of course, includes
options specifi c to the node.)
The fi rst three items below
the divider in Figure 13 de-
termine what information
is included for an object.
The fi rst item, Show Cap-
tion, ControlSource indi-
cates whether you want to

include the Caption or ControlSource of an object
in the display, to help you determine which ob-
ject it is. In Figure 12, you can see, for example,
that the Caption for the button cmdOK is ‘OK.’ As
you’d expect, the Show class name and Show class
 library and name options are mutually exclusive;

Figure 10. Using Ctrl+Click on a method in Method Treeview shows you all code for that method,
from all levels of the inheritance hierarchy.

Figure 11. You can set Document Treeview to show only objects that contain code.

January 2013 FoxRockX Page 7

checking one unchecks the other. However, you
can choose to uncheck both and show no informa-
tion about the class of an object.

The last three items in that section of the con-
text menu determine which methods are displayed.
By default, Document Treeview shows only meth-
ods that have code at this level of the hierarchy.
Check Show all custom methods to also include all
methods added to the current object. Check Show
methods w/inherited code; this form to also show
methods of the current object that have code higher
in the inheritance hierarchy. Check Show methods
w/inherited code; all objects to include methods of
contained objects that have code somewhere in the
inheritance hierarchy, as well.

The items above the divider control the
appearance, but not the content of Document
Treeview. The fi rst item, Always expand all nodes,
determines whether all items in the treeview are
expanded when you open the tool or when you
open a form or class with the tool open. The next

two items determine the order in which
methods and objects, respectively,
appear in the list. For methods, the only
choices are a case-sensitive alphabetical
sort or a case-insensitive alphabetical
sort. Objects offer a lot more choices, in
addition to those two; the list is shown in
Figure 14. You can leave them unsorted,
in which case they appear in the same
order as in the Property Sheet. You can
also sort by TabIndex or from top to
bottom or left to right.

By default, objects within controls that have the
MemberClass property sort in creation order, the
same order in which they appear in the Property
Sheet. Checking the fi nal option in Figure 14, Mem-
berClasses -- ordered, sorts them according to the
order specifi ed, such as PageOrder or ColumnOr-
der.

Lots more to try
The tools described in this article and my last one
are only a tiny subset of what Thor offers. Do your-
self a favor: download and install Thor, and work
your way through the menu to see what other gems
you can fi nd.

Author Profi le
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced nu-
merous Visual FoxPro applications for businesses and
other organizations. Tamar is author or co-author of
nearly a dozen books including the award winning
Hacker’s Guide to Visual FoxPro, Microsoft Offi ce Au-
tomation with Visual FoxPro and Taming Visual Fox-
Pro’s SQL. Her latest collaboration is VFPX: Open
Source Treasure for the VFP Developer. Her books are
available from Hentzenwerke Publishing (www.hent-
zenwerke.com). Tamar was a Microsoft Support Most
Valuable Professional from the program's inception
in 1993 until 2011. She is one of the organizers of the
annual Southwest Fox conference. In 2007, Tamar re-
ceived the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

Figure 13. Do cument Treeview’s context menu includes a num-
ber of ways to determine what’s displayed.

Figure 14. The re are a number of ways to
sort objects in Document Treeview.

Figure 12. U nchecking the Methods checkbox tells Document Treeview to show all
objects and no methods.

